Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
J Med Imaging (Bellingham) ; 11(2): 024011, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38655188

RESUMO

Purpose: Diffusion tensor imaging (DTI) is a magnetic resonance imaging technique that provides unique information about white matter microstructure in the brain but is susceptible to confounding effects introduced by scanner or acquisition differences. ComBat is a leading approach for addressing these site biases. However, despite its frequent use for harmonization, ComBat's robustness toward site dissimilarities and overall cohort size have not yet been evaluated in terms of DTI. Approach: As a baseline, we match N=358 participants from two sites to create a "silver standard" that simulates a cohort for multi-site harmonization. Across sites, we harmonize mean fractional anisotropy and mean diffusivity, calculated using participant DTI data, for the regions of interest defined by the JHU EVE-Type III atlas. We bootstrap 10 iterations at 19 levels of total sample size, 10 levels of sample size imbalance between sites, and 6 levels of mean age difference between sites to quantify (i) ßAGE, the linear regression coefficient of the relationship between FA and age; (ii) Î³/f*, the ComBat-estimated site-shift; and (iii) Î´/f*, the ComBat-estimated site-scaling. We characterize the reliability of ComBat by evaluating the root mean squared error in these three metrics and examine if there is a correlation between the reliability of ComBat and a violation of assumptions. Results: ComBat remains well behaved for ßAGE when N>162 and when the mean age difference is less than 4 years. The assumptions of the ComBat model regarding the normality of residual distributions are not violated as the model becomes unstable. Conclusion: Prior to harmonization of DTI data with ComBat, the input cohort should be examined for size and covariate distributions of each site. Direct assessment of residual distributions is less informative on stability than bootstrap analysis. We caution use ComBat of in situations that do not conform to the above thresholds.

2.
Aging Cell ; : e14166, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659245

RESUMO

Gray matter (GM) alterations play a role in aging-related disorders like Alzheimer's disease and related dementias, yet MRI studies mainly focus on macroscopic changes. Although reliable indicators of atrophy, morphological metrics like cortical thickness lack the sensitivity to detect early changes preceding visible atrophy. Our study aimed at exploring the potential of diffusion MRI in unveiling sensitive markers of cortical and subcortical age-related microstructural changes and assessing their associations with cognitive and behavioral deficits. We leveraged the Human Connectome Project-Aging cohort that included 707 participants (394 female; median age = 58, range = 36-90 years) and applied the powerful mean apparent diffusion propagator model to measure microstructural parameters, along with comprehensive behavioral and cognitive test scores. Both macro- and microstructural GM characteristics were strongly associated with age, with widespread significant microstructural correlations reflective of cellular morphological changes, reduced cellular density, increased extracellular volume, and increased membrane permeability. Importantly, when correlating MRI and cognitive test scores, our findings revealed no link between macrostructural volumetric changes and neurobehavioral performance. However, we found that cellular and extracellular alterations in cortical and subcortical GM regions were associated with neurobehavioral performance. Based on these findings, it is hypothesized that increased microstructural heterogeneity and decreased neurite orientation dispersion precede macrostructural changes, and that they play an important role in subsequent cognitive decline. These alterations are suggested to be early markers of neurocognitive performance that may distinctly aid in identifying the mechanisms underlying phenotypic aging and subsequent age-related functional decline.

3.
Neuroinformatics ; 22(2): 193-205, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526701

RESUMO

T1-weighted (T1w) MRI has low frequency intensity artifacts due to magnetic field inhomogeneities. Removal of these biases in T1w MRI images is a critical preprocessing step to ensure spatially consistent image interpretation. N4ITK bias field correction, the current state-of-the-art, is implemented in such a way that makes it difficult to port between different pipelines and workflows, thus making it hard to reimplement and reproduce results across local, cloud, and edge platforms. Moreover, N4ITK is opaque to optimization before and after its application, meaning that methodological development must work around the inhomogeneity correction step. Given the importance of bias fields correction in structural preprocessing and flexible implementation, we pursue a deep learning approximation / reinterpretation of the N4ITK bias fields correction to create a method which is portable, flexible, and fully differentiable. In this paper, we trained a deep learning network "DeepN4" on eight independent cohorts from 72 different scanners and age ranges with N4ITK-corrected T1w MRI and bias field for supervision in log space. We found that we can closely approximate N4ITK bias fields correction with naïve networks. We evaluate the peak signal to noise ratio (PSNR) in test dataset against the N4ITK corrected images. The median PSNR of corrected images between N4ITK and DeepN4 was 47.96 dB. In addition, we assess the DeepN4 model on eight additional external datasets and show the generalizability of the approach. This study establishes that incompatible N4ITK preprocessing steps can be closely approximated by naïve deep neural networks, facilitating more flexibility. All code and models are released at https://github.com/MASILab/DeepN4 .


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Redes Neurais de Computação , Viés
4.
Cereb Cortex ; 34(3)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38517178

RESUMO

Cognitive decline with aging involves multifactorial processes, including changes in brain structure and function. This study focuses on the role of white matter functional characteristics, as reflected in blood oxygenation level-dependent signals, in age-related cognitive deterioration. Building on previous research confirming the reproducibility and age-dependence of blood oxygenation level-dependent signals acquired via functional magnetic resonance imaging, we here employ mediation analysis to test if aging affects cognition through white matter blood oxygenation level-dependent signal changes, impacting various cognitive domains and specific white matter regions. We used independent component analysis of resting-state blood oxygenation level-dependent signals to segment white matter into coherent hubs, offering a data-driven view of white matter's functional architecture. Through correlation analysis, we constructed a graph network and derived metrics to quantitatively assess regional functional properties based on resting-state blood oxygenation level-dependent fluctuations. Our analysis identified significant mediators in the age-cognition relationship, indicating that aging differentially influences cognitive functions by altering the functional characteristics of distinct white matter regions. These findings enhance our understanding of the neurobiological basis of cognitive aging, highlighting the critical role of white matter in maintaining cognitive integrity and proposing new approaches to assess interventions targeting cognitive decline in older populations.


Assuntos
Disfunção Cognitiva , Substância Branca , Humanos , Idoso , Substância Branca/diagnóstico por imagem , Reprodutibilidade dos Testes , Mapeamento Encefálico , Envelhecimento , Encéfalo/diagnóstico por imagem , Cognição , Imageamento por Ressonância Magnética , Disfunção Cognitiva/diagnóstico por imagem
5.
Magn Reson Imaging ; 108: 11-21, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38309376

RESUMO

Diffusion MRI of the spinal cord (SC) is susceptible to geometric distortion caused by field inhomogeneities, and prone to misalignment across time series and signal dropout caused by biological motion. Several modifications of image acquisition and image processing techniques have been introduced to overcome these artifacts, but their specific benefits are largely unproven and warrant further investigations. We aim to evaluate two specific aspects of image acquisition and processing that address image quality in diffusion studies of the spinal cord: susceptibility corrections to reduce geometric distortions, and cardiac triggering to minimize motion artifacts. First, we evaluate 4 distortion preprocessing strategies on 7 datasets of the cervical and lumbar SC and find that while distortion correction techniques increase geometric similarity to structural images, they are largely driven by the high-contrast cerebrospinal fluid, and do not consistently improve the geometry within the cord nor improve white-to-gray matter contrast. We recommend at a minimum to perform bulk-motion correction in preprocessing and posit that improvements/adaptations are needed for spinal cord distortion preprocessing algorithms, which are currently optimized and designed for brain imaging. Second, we design experiments to evaluate the impact of removing cardiac triggering. We show that when triggering is foregone, images are qualitatively similar to triggered sequences, do not have increased prevalence of artifacts, and result in similar diffusion tensor indices with similar reproducibility to triggered acquisitions. When triggering is removed, much shorter acquisitions are possible, which are also qualitatively and quantitatively similar to triggered sequences. We suggest that removing cardiac triggering for cervical SC diffusion can be a reasonable option to save time with minimal sacrifice to image quality.


Assuntos
Imagem de Difusão por Ressonância Magnética , Processamento de Imagem Assistida por Computador , Reprodutibilidade dos Testes , Processamento de Imagem Assistida por Computador/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Medula Espinal/diagnóstico por imagem , Encéfalo , Algoritmos , Artefatos , Imagem Ecoplanar/métodos
6.
bioRxiv ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38328148

RESUMO

White matter signals in resting state blood oxygen level dependent functional magnetic resonance (BOLD-fMRI) have been largely discounted, yet there is growing evidence that these signals are indicative of brain activity. Understanding how these white matter signals capture function can provide insight into brain physiology. Moreover, functional signals could potentially be used as early markers for neurological changes, such as in Alzheimer's Disease. To investigate white matter brain networks, we leveraged the OASIS-3 dataset to extract white matter signals from resting state BOLD-FMRI data on 711 subjects. The imaging was longitudinal with a total of 2,026 images. Hierarchical clustering was performed to investigate clusters of voxel-level correlations on the timeseries data. The stability of clusters was measured with the average Dice coefficients on two different cross fold validations. The first validated the stability between scans, and the second validated the stability between subject populations. Functional clusters at hierarchical levels 4, 9, 13, 18, and 24 had local maximum stability, suggesting better clustered white matter. In comparison with JHU-DTI-SS Type-I Atlas defined regions, clusters at lower hierarchical levels identified well defined anatomical lobes. At higher hierarchical levels, functional clusters mapped motor and memory functional regions, identifying 50.00%, 20.00%, 27.27%, and 35.14% of the frontal, occipital, parietal, and temporal lobe regions respectively.

7.
ArXiv ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38344221

RESUMO

Connectivity matrices derived from diffusion MRI (dMRI) provide an interpretable and generalizable way of understanding the human brain connectome. However, dMRI suffers from inter-site and between-scanner variation, which impedes analysis across datasets to improve robustness and reproducibility of results. To evaluate different harmonization approaches on connectivity matrices, we compared graph measures derived from these matrices before and after applying three harmonization techniques: mean shift, ComBat, and CycleGAN. The sample comprises 168 age-matched, sex-matched normal subjects from two studies: the Vanderbilt Memory and Aging Project (VMAP) and the Biomarkers of Cognitive Decline Among Normal Individuals (BIOCARD). First, we plotted the graph measures and used coefficient of variation (CoV) and the Mann-Whitney U test to evaluate different methods' effectiveness in removing site effects on the matrices and the derived graph measures. ComBat effectively eliminated site effects for global efficiency and modularity and outperformed the other two methods. However, all methods exhibited poor performance when harmonizing average betweenness centrality. Second, we tested whether our harmonization methods preserved correlations between age and graph measures. All methods except for CycleGAN in one direction improved correlations between age and global efficiency and between age and modularity from insignificant to significant with p-values less than 0.05.

8.
Sci Adv ; 10(4): eadi0616, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38277462

RESUMO

Correlations between magnetic resonance imaging (MRI) blood oxygenation level-dependent (BOLD) signals from pairs of gray matter areas are used to infer their functional connectivity, but they are unable to describe how white matter is engaged in brain networks. Recently, evidence that BOLD signals in white matter are robustly detectable and are modulated by neural activities has accumulated. We introduce a three-way correlation between BOLD signals from pairs of gray matter volumes (nodes) and white matter bundles (edges) to define the communication connectivity through each white matter bundle. Using MRI images from publicly available databases, we show, for example, that the three-way connectivity is influenced by age. By integrating functional MRI signals from white matter as a third component in network analyses, more comprehensive descriptions of brain function may be obtained.


Assuntos
Substância Branca , Substância Branca/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Imageamento por Ressonância Magnética , Mapeamento Encefálico/métodos
9.
bioRxiv ; 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38260265

RESUMO

Understanding the intricate interplay between gray matter (GM) and white matter (WM) is crucial for deciphering the complex activities of the brain. While diffusion tensor imaging (DTI) has advanced the mapping of these structural pathways, the relationship between structural connectivity (SC) and functional connectivity (FC) remains inadequately understood. This study addresses the need for a more integrative approach by mapping the importance of the inter-GM functional link to its structural counterparts in WM. This mapping yields a spatial distribution of engagement that is not only highly reproducible but also aligns with direct structural, functional, and bioenergetic measures within WM, illustrating a notable interdependence between the function of GM and the characteristics of WM. Additionally, our research has uncovered a set of unique engagement modes through a clustering analysis of window-wise engagement maps, highlighting the dyanmic nature of the engagement. The engagement along with their temporal variations revealed significant differences across genders and age groups. These findings suggest the potential of WM engagement as a biomarker for neurological and cognitive conditions, offering a more nuanced understanding of individualized brain activity and connectivity patterns.

10.
bioRxiv ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38260525

RESUMO

Gray matter (GM) alterations play a role in aging-related disorders like Alzheimer's disease and related dementias, yet MRI studies mainly focus on macroscopic changes. Although reliable indicators of atrophy, morphological metrics like cortical thickness lack the sensitivity to detect early changes preceding visible atrophy. Our study aimed at exploring the potential of diffusion MRI in unveiling sensitive markers of cortical and subcortical age-related microstructural changes and assessing their associations with cognitive and behavioral deficits. We leveraged the Human Connectome Project-Aging cohort that included 707 unimpaired participants (394 female; median age = 58, range = 36-90 years) and applied the powerful mean apparent diffusion propagator model to measure microstructural parameters, along with comprehensive behavioral and cognitive test scores. Both macro- and microstructural GM characteristics were strongly associated with age, with widespread significant microstructural correlations reflective of cellular morphological changes, reduced cellular density, increased extracellular volume, and increased membrane permeability. Importantly, when correlating MRI and cognitive test scores, our findings revealed no link between macrostructural volumetric changes and neurobehavioral performance. However, we found that cellular and extracellular alterations in cortical and subcortical GM regions were associated with neurobehavioral performance. Based on these findings, it is hypothesized that increased microstructural heterogeneity and decreased neurite orientation dispersion precede macrostructural changes, and that they play an important role in subsequent cognitive decline. These alterations are suggested to be early markers of neurocognitive performance that may distinctly aid in identifying the mechanisms underlying phenotypic aging and subsequent age-related functional decline.

11.
ArXiv ; 2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-37986731

RESUMO

Imaging findings inconsistent with those expected at specific chronological age ranges may serve as early indicators of neurological disorders and increased mortality risk. Estimation of chronological age, and deviations from expected results, from structural magnetic resonance imaging (MRI) data has become an important proxy task for developing biomarkers that are sensitive to such deviations. Complementary to structural analysis, diffusion tensor imaging (DTI) has proven effective in identifying age-related microstructural changes within the brain white matter, thereby presenting itself as a promising additional modality for brain age prediction. Although early studies have sought to harness DTI's advantages for age estimation, there is no evidence that the success of this prediction is owed to the unique microstructural and diffusivity features that DTI provides, rather than the macrostructural features that are also available in DTI data. Therefore, we seek to develop white-matter-specific age estimation to capture deviations from normal white matter aging. Specifically, we deliberately disregard the macrostructural information when predicting age from DTI scalar images, using two distinct methods. The first method relies on extracting only microstructural features from regions of interest (ROIs). The second applies 3D residual neural networks (ResNets) to learn features directly from the images, which are non-linearly registered and warped to a template to minimize macrostructural variations. When tested on unseen data, the first method yields mean absolute error (MAE) of 6.11 ± 0.19 years for cognitively normal participants and MAE of 6.62 ± 0.30 years for cognitively impaired participants, while the second method achieves MAE of 4.69 ± 0.23 years for cognitively normal participants and MAE of 4.96 ± 0.28 years for cognitively impaired participants. We find that the ResNet model captures subtler, non-macrostructural features for brain age prediction.

12.
medRxiv ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37662348

RESUMO

Background: As large analyses merge data across sites, a deeper understanding of variance in statistical assessment across the sources of data becomes critical for valid analyses. Diffusion tensor imaging (DTI) exhibits spatially varying and correlated noise, so care must be taken with distributional assumptions. Purpose: We characterize the role of physiology, subject compliance, and the interaction of subject with the scanner in the understanding of DTI variability, as modeled in spatial variance of derived metrics in homogeneous regions. Methods: We analyze DTI data from 1035 subjects in the Baltimore Longitudinal Study of Aging (BLSA), with ages ranging from 22.4 to 103 years old. For each subject, up to 12 longitudinal sessions were conducted. We assess variance of DTI scalars within regions of interest (ROIs) defined by four segmentation methods and investigate the relationships between the variance and covariates, including baseline age, time from the baseline (referred to as "interval"), motion, sex, and whether it is the first scan or the second scan in the session. Results: Covariate effects are heterogeneous and bilaterally symmetric across ROIs. Inter-session interval is positively related (p ≪ 0.001) to FA variance in the cuneus and occipital gyrus, but negatively (p ≪ 0.001) in the caudate nucleus. Males show significantly (p ≪ 0.001) higher FA variance in the right putamen, thalamus, body of the corpus callosum, and cingulate gyrus. In 62 out of 176 ROIs defined by the Eve type-1 atlas, an increase in motion is associated (p < 0.05) with a decrease in FA variance. Head motion increases during the rescan of DTI (Δµ = 0.045 millimeters per volume). Conclusions: The effects of each covariate on DTI variance, and their relationships across ROIs are complex. Ultimately, we encourage researchers to include estimates of variance when sharing data and consider models of heteroscedasticity in analysis. This work provides a foundation for study planning to account for regional variations in metric variance.

13.
Res Sq ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38014176

RESUMO

T1-weighted (T1w) MRI has low frequency intensity artifacts due to magnetic field inhomogeneities. Removal of these biases in T1w MRI images is a critical preprocessing step to ensure spatially consistent image interpretation. N4ITK bias field correction, the current state-of-the-art, is implemented in such a way that makes it difficult to port between different pipelines and workflows, thus making it hard to reimplement and reproduce results across local, cloud, and edge platforms. Moreover, N4ITK is opaque to optimization before and after its application, meaning that methodological development must work around the inhomogeneity correction step. Given the importance of bias fields correction in structural preprocessing and flexible implementation, we pursue a deep learning approximation / reinterpretation of the N4ITK bias fields correction to create a method which is portable, flexible, and fully differentiable. In this paper, we trained a deep learning network "DeepN4" on eight independent cohorts from 72 different scanners and age ranges with N4ITK-corrected T1w MRI and bias field for supervision in log space. We found that we can closely approximate N4ITK bias fields correction with naïve networks. We evaluate the peak signal to noise ratio (PSNR) in test dataset against the N4ITK corrected images. The median PSNR of corrected images between N4ITK and DeepN4 was 47.96 dB. In addition, we assess the DeepN4 model on eight additional external datasets and show the generalizability of the approach. This study establishes that incompatible N4ITK preprocessing steps can be closely approximated by naïve deep neural networks, facilitating more flexibility. All code and models are released at https://github.com/MASILab/DeepN4.

14.
Proc Natl Acad Sci U S A ; 120(42): e2219666120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37824529

RESUMO

Recent studies have revealed the production of time-locked blood oxygenation level-dependent (BOLD) functional MRI (fMRI) signals throughout the entire brain in response to tasks, challenging the existence of sparse and localized brain functions and highlighting the pervasiveness of potential false negative fMRI findings. "Whole-brain" actually refers to gray matter, the only tissue traditionally studied with fMRI. However, several reports have demonstrated reliable detection of BOLD signals in white matter, which have previously been largely ignored. Using simple tasks and analyses, we demonstrate BOLD signal changes across the whole brain, in both white and gray matters, in similar manner to previous reports of whole brain studies. We investigated whether white matter displays time-locked BOLD signals across multiple structural pathways in response to a stimulus in a similar manner to the cortex. We find that both white and gray matter show time-locked activations across the whole brain, with a majority of both tissue types showing statistically significant signal changes for all task stimuli investigated. We observed a wide range of signal responses to tasks, with different regions showing different BOLD signal changes to the same task. Moreover, we find that each region may display different BOLD responses to different stimuli. Overall, we present compelling evidence that, just like all gray matter, essentially all white matter in the brain shows time-locked BOLD signal changes in response to multiple stimuli, challenging the idea of sparse functional localization and the prevailing wisdom of treating white matter BOLD signals as artifacts to be removed.


Assuntos
Substância Branca , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia , Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/fisiologia , Imageamento por Ressonância Magnética
15.
bioRxiv ; 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37808645

RESUMO

Characterizing how, when and where the human brain changes across the lifespan is fundamental to our understanding of developmental processes of childhood and adolescence, degenerative processes of aging, and divergence from normal patterns in disease and disorders. We aimed to provide detailed descriptions of white matter pathways across the lifespan by thoroughly characterizing white matter microstructure, white matter macrostructure, and morphology of the cortex associated with white matter pathways. We analyzed 4 large, high-quality, publicly-available datasets comprising 2789 total imaging sessions, and participants ranging from 0 to 100 years old, using advanced tractography and diffusion modeling. We first find that all microstructural, macrostructural, and cortical features of white matter bundles show unique lifespan trajectories, with rates and timing of development and degradation that vary across pathways - describing differences between types of pathways and locations in the brain, and developmental milestones of maturation of each feature. Second, we show cross-sectional relationships between different features that may help elucidate biological changes occurring during different stages of the lifespan. Third, we show unique trajectories of age-associations across features. Finally, we find that age associations during development are strongly related to those during aging. Overall, this study reports normative data for several features of white matter pathways of the human brain that will be useful for studying normal and abnormal white matter development and degeneration.

16.
Artigo em Inglês | MEDLINE | ID: mdl-37600506

RESUMO

Recently, increasing evidence suggests that fMRI signals in white matter (WM), conventionally ignored as nuisance, are robustly detectable using appropriate processing methods and are related to neural activity, while changes in WM with aging and degeneration are also well documented. These findings suggest variations in patterns of BOLD signals in WM should be investigated. However, existing fMRI analysis tools, which were designed for processing gray matter signals, are not well suited for large-scale processing of WM signals in fMRI data. We developed an automatic pipeline for high-performance preprocessing of fMRI images with emphasis on quantifying changes in BOLD signals in WM in an aging population. At the image processing level, the pipeline integrated existing software modules with fine parameter tunings and modifications to better extract weaker WM signals. The preprocessing results primarily included whole-brain time-courses, functional connectivity, maps and tissue masks in a common space. At the job execution level, this pipeline exploited a local XNAT to store datasets and results, while using DAX tool to automatic distribute batch jobs that run on high-performance computing clusters. Through the pipeline, 5,034 fMRI/T1 scans were preprocessed. The intraclass correlation coefficient (ICC) of test-retest experiment based on the preprocessed data is 0.52 - 0.86 (N=1000), indicating a high reliability of our pipeline, comparable to previously reported ICC in gray matter experiments. This preprocessing pipeline highly facilitates our future analyses on WM functional alterations in aging and may be of benefit to a larger community interested in WM fMRI studies.

17.
Artigo em Inglês | MEDLINE | ID: mdl-37621418

RESUMO

Nonlinear gradients impact diffusion weighted MRI by introducing spatial variation in estimated diffusion tensors. Recent studies have shown that increasing signal-to-noise ratios and the use of ultra-strong gradients may lead to clinically significant impacts on analyses due to these nonlinear gradients in microstructural measures. These effects can potentially bias tractography results and cause misinterpretation of data. Herein, we characterize the impact of an "approximate" gradient nonlinearity correction technique in tractography using empirically derived gradient nonlinear fields. This technique scales the diffusion signal by the change in magnitude due to the gradient nonlinearities, without concomitant correction of gradient direction errors. The impact of this correction on tractography is assessed through white matter bundle segmentation and connectomics via bundle-wise volume, fractional anisotropy, mean diffusivity, radial diffusivity, axial diffusivity, primary eigenvector, and length; as well as the modularity, global efficiency, and characteristic path length connectomics graph measures. We investigate the differences between (1) these measures directly and (2) the within session variability of these measures before and after approximate correction in 61 subjects from the MASiVar pediatric reproducibility dataset. We find approximate correction results is little to no differences on the population level, but large differences on the subject-specific level for both the measures directly and their within session variability. Thus, this study suggests though approximate correction of gradient nonlinearities may not change tractography findings on the population level, subject-specific interpretations may exhibit large fluctuations. A limitation is the lack of comparison with the empirical voxel-wise gradient table correction.

18.
Artigo em Inglês | MEDLINE | ID: mdl-37465092

RESUMO

The blood oxygen level dependent (BOLD) signal from functional magnetic resonance imaging (fMRI) is a noninvasive technique that has been widely used in research to study brain function. However, fMRI suffers from susceptibility-induced off resonance fields which may cause geometric distortions and mismatches with anatomical images. State-of-the-art correction methods require acquiring reverse phase encoded images or additional field maps to enable distortion correction. However, not all imaging protocols include these additional scans and thus cannot take advantage of these susceptibility correction capabilities. As such, in this study we aim to enable state-of-the-art distortion correction with FSL's topup algorithm of historical and/or limited fMRI data that include only a structural image and single phase encoded fMRI. To do this, we use 3D U-net models to synthesize undistorted fMRI BOLD contrast images from the structural image and use this undistorted synthetic image as an anatomical target for distortion correction with topup. We evaluate the efficacy of this approach, named SynBOLD-DisCo (synthetic BOLD images for distortion correction), and show that BOLD images corrected using our approach are geometrically more similar to structural images than the distorted BOLD data and are practically equivalent to state-of-the-art correction methods which require reverse phase encoded data. Future directions include additional validation studies, integration with other preprocessing operations, retraining with broader pathologies, and investigating the effects of spin echo versus gradient echo images for training and distortion correction. In summary, we demonstrate SynBOLD-DisCo corrects distortion of fMRI when reverse phase encoding scans or field maps are not available.

19.
Artigo em Inglês | MEDLINE | ID: mdl-37465094

RESUMO

Multisite contributions are essential to improve the reliability and statistical power of imaging studies but introduce a complexity because of different acquisition protocols and scanners. The hemodynamic response function (HRF) is the transform that relates neural activity to the measured blood oxygenation level-dependent (BOLD) signal in MRI and contains information about the latency, amplitude, and duration of neuronal activations. Acquisition variabilities, without adding harmonization techniques, can severely limit our ability to characterize spatial effects. To address this problem, we propose to study and remove variabilities of the sampling rate and scanners on estimates of the HRF. We computed the HRF using a blind deconvolution method in 547 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) across 62 sites and 18 scanners. The approach consists of studying the changes of the response according to repetition times (TR) and scanner models. We applied ComBAT, a statistical multi-site harmonization technique, to evaluate and reduce the scanner and repetition time effects and used the Wilcoxon rank sum test to assess the performance of the harmonization. Results show high scanner and repetition time variabilities (|d| ≥ 0.38, p = 4.5 × 10-5) across features, indicating that using harmonization is crucial in multi-site studies. ComBAT successfully removes the sampling effects and reduces the variance between scanners for 7 out of 10 of the HRF features (|d| ≤ 0.05, p = 0.0052). Scanners effects have been characterized on multi-site datasets, but the repetition time impact has been less studied. We showed that the use of different values of repetition time leads to changes in HRF behavior. Regression modeling changes in the HRF on the harmonized data are not significant (p = 0.0401) which does not allow to conclude how HRF changes with aging.

20.
Magn Reson Imaging ; 103: 18-27, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37400042

RESUMO

Functional magnetic resonance images (fMRI) acquired using echo planar sequences typically suffer from spatial distortions due to susceptibility induced off-resonance fields, which may cause geometric mismatch with structural images and affect subsequent quantification and localization of brain function. State-of-the art distortion correction methods (for example, using FSL's topup or AFNI's 3dQwarp algorithms) require the collection of additional scans - either field maps or images with reverse phase encoding directions (i.e., blip-up/blip-down acquisitions) - to estimate and correct distortions. However, not all imaging protocols acquire these additional data and thus cannot take advantage of these post-acquisition corrections. In this study, we aim to enable state-of-the art processing of historical or limited datasets that do not include specific sequences for distortion correction by using only the acquired functional data and a single commonly acquired structural image. To achieve this, we synthesize an undistorted image with contrast similar to the fMRI data and use the non-distorted synthetic image as an anatomical target for distortion correction. We evaluate the efficacy of this approach, named SynBOLD-DisCo (Synthetic BOLD contrast for Distortion Correction), and show that this distortion correction process yields fMRI data that are geometrically similar to non-distorted structural images, with distortion correction virtually equivalent to acquisitions that do contain both blip-up/blip-down images. Our method is available as a Singularity container, source code, and an executable trained model to facilitate evaluation and integration into existing fMRI preprocessing pipelines.


Assuntos
Imagem Ecoplanar , Processamento de Imagem Assistida por Computador , Imagem Ecoplanar/métodos , Processamento de Imagem Assistida por Computador/métodos , Artefatos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Encéfalo/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...